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Abstract

This notes is based on a lecture given at the Israel Institute of Technology in Haifa. The
reader is invited to send comments and remarks to the author to improve this notes.
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1 Introduction

1.1 Motivation - Schrödinger operators

• solid state physics: long time behavior of particle

⇒ (QM) study spectral theory of Schrödinger operators

H := −∆ + V (self-adjoint)

continuous model discrete model

H unbounded H bounded (depends on vertex degree)

Example on L2(R) Example on `2(Z)

H = − d2

dx2
+ V d

dx
f(x0) ≈ f(x0+h)−f(x0)

h

d2

dx2
f(x0) ≈

(
f(x0+h)−f(x0)

)
−
(
f(x0+2h)−f(x0+h)

)
h2

h=1
= −f(x0)− f(x0 + 2) + 2 · f(x0 + 1)(

Hψ
)
(n) := ψ(n− 1) + ψ(n+ 1) + V (n)ψ(n)

1

1.2 The integrated density of states (IDS)

• the following approach has been widely analyzed as discussed later, see e.g. [Bel92,
Len02, LS05, LMV08, Ele08, LV09, LSV11, Pog14, PS16]



2 1. Introduction

• consider the Schrödinger operator H : `2(Z)→ `2(Z) defined by(
Hψ
)
(n) := ψ(n− 1) + ψ(n+ 1) + V (n)ψ(n)

• take an exhausting sequence FN := {−N,−N + 1, . . . , N} ⊆ Z, N ∈ N, and denote
by HFN

the restriction of H to FN with Dirichlet boundary conditions

• consider
NFN

(E) := ]{λ ∈ R |λ eigenvalue of HFN
and λ ≤ E}

Definition 1.1. The limit (if it exists)

N(E) := lim
N→∞

NFN
(E)

]FN

is called integrated density of states (IDS) of H.

• χ(HFN
≤ E) is the eigenprojection onto the eigenspace of HFN

with energies less or
equal than E

• then NFN
(E) = tr

(
χ(HFN

≤ E)
)

Rinf(σ(H)) sup(σ(H))

gap

E

N(E)

gap label

• People discovered in examples that the spectral gaps can be labeled such that the
labeling is stable under small perturbations of the Hamiltonian.

• Based on this experiences Jean Bellissard realized that the Gap labeling should be of
topological nature. Thus, he connected the gap labels with the K-theory (K0-group)
and the trace of associated C∗-algebras.

Aim: Determine the gap labels of a given Schrödinger operator.

1.3 Strategy

• dynamical approach → view operators as suitable integral operators with kernels on
the dynamical system (C∗-algebra approach)

• Pastur-Shubin formula: write N(E) as a trace of the corresponding eigenprojections

• under suitable ergodicity assumptions the trace is given by an integral over the
(unique) ergodic measure

• define a group structure on the ”equivalence classes” (by unitary) of the eigenpro-
jection (K0-group)

• then the possible gap labels are contained in the image of the trace of the K0 group



2 C∗-algebras associated with dynamical sys-
tems and the integrated density of states

2.1 C∗-algebras

In the following section, funcamental notions of C∗-algebras are introduced. This is just
a short summary. The reader is referred to [Dix77, Dix81, Mur90, Bla17] and references
therein for further background.

Definition 2.1 (algebra). An algebra A is a vector space (over C) with multiplication
? : A× A→ A, (a, b) 7→ a · b, satisfying

• a ? (b ? c) = (a ? b) ? c (associative)

•
(a+ b) ? c = a ? c+ b ? c

a ? (b+ c) = a ? b+ a ? c
(distributive)

• α · (a ? b) = (α · a) ? b = a ? (α · b)

for all a, b, c ∈ A and α ∈ C. An algebra A is called unital if there is an e ∈ A such that
e ? a = a ? e = a for all a ∈ A. Then e is called unit.

Remark 2.2. If A is a unital algebra, then the unit e is unique. (e = e ? e′ = e′) In
general, the multiplication is not commutative. An algebra A is said to be commutative if
a ? b = b ? a for all a, b ∈ A and otherwise A is noncommutative.

Definition 2.3 (Banachalgebra). A tuple (A, ‖ · ‖) is called a normed algebra if A is an
algebra and the map ‖ · ‖ : A → [0,∞) is a norm satisfying ‖a ? b‖ ≤ ‖a‖ ‖b‖ for all
a, b ∈ A. If A is additional unital, we require ‖e‖ = 1. Furthermore, a normed algebra
(A, ‖ · ‖) is called Banachalgebra if (A, ‖ · ‖) is a complete space.

Example 2.4. The normed space (`1(Z), ‖ · ‖1) with ‖ψ‖1 :=
∑

n∈Z |ψ(n)| and multi-
plication (

ψ ? ϕ
)
(n) :=

∑
k∈Z

ψ(n− k)ϕ(k)

is a (commutative) Banachalgebra with unit δ0 ∈ `1(Z) defined by δ0(n) = 1 if n = 1
and otherwise δ0(n) = 0.

Remark 2.5. The constraint ‖a ? b‖ ≤ ‖a‖ ‖b‖ guarantees the continuity of the multipli-
cation on A.

Definition 2.6 (∗-algebra). Let A be an algebra. A map ∗ : A→ A is called involution if

• (a+ αb)∗ = a∗ + αb∗

• (a ? b)∗ = b∗ ? a∗

• (a∗)∗ = a
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holds for all a, b ∈ A and α ∈ C. Then (A, ∗) is called ∗-algebra / involutive algebra.

Definition 2.7 (C∗-algebra). Let (C, ∗, ‖ · ‖) be a ∗-Banachalgebra. Then C is called a
C∗-algebra if

‖a‖2 ≤ ‖a∗ ? a‖ , a ∈ C ,

holds.

Remark 2.8. The constraint ‖a‖2 ≤ ‖a∗ ? a‖ is equivalent to ‖a‖2 = ‖a∗ ? a‖. For a
C∗-algebra, ∗ : C→ C is isometric (i.e., ‖a∗‖ = ‖a‖) since

‖a‖2 ≤ ‖a∗ ? a‖ ≤ ‖a∗‖ ‖a‖ ⇒ ‖a‖ ≤ ‖a∗‖.

Example 2.9 (Complex plane). The set C = C with pointwise multiplication and invo-
lution defined by complex conjugation is a unital (commutative) C∗-algebra with unit
e = 1 where ‖α‖ := |α|.

Example 2.10. Let X be a topological space (locally compact). The set C = C0(X)
with pointwise multiplication, uniform norm ‖f‖∞ := supx∈X |f(x)| and involution
defined by complex conjugation is a (commutative) C∗-algebra. It is unital if and only
if X is a compact space.

Example 2.11 (Linear bounded operators). Let H be a Hilbert space. Let L(H) be
the set of all linear, bounded operators T : H → H with multiplication defined by
composition, involution defined by the adjoint of an operator and operator norm ‖T‖ :=
sup‖ψ‖≤1 ‖Tψ‖. Then C := L(H) is a (noncommutative) C∗-algebra. For T ∈ L(H),
the norm closure of the set {p(T ) | p polynomial} is a (commutative) C∗-subalgebra.

Example 2.12. The normed space (`1(Z), ‖ · ‖1) with ‖ψ‖1 :=
∑

n∈Z |ψ(n)| and convo-
lution (

ψ ? ϕ
)
(n) :=

∑
k∈Z

ψ(n− k)ϕ(k)

is a (commutative) Banachalgebra with unit δ0 ∈ `1(Z) defined by δ0(n) = 1 if n = 1

and otherwise δ0(n) = 0. The map ∗ : `1(Z)→ `1(Z) defined by ψ∗(n) := ψ(−n) defines
a involution. Hence, (`1(Z), ∗, ‖ · ‖1) is a ∗-Banachalgebra but not a C∗-algebra: Let
ψ ∈ `1(Z) be defined by ψ(0) = 1, ψ(1) = ψ(2) = −1 and ψ(n) = 0 if n ∈ Z \ {0, 1, 2}.
Then (

ψ∗ ? ψ
)
(n) =


3, n = 0,

−1, n = ±2,

0, otherwise

holds. Thus, ‖ψ∗ ? ψ‖ = 5 while ‖ψ‖2 = 9. Consequently, the C∗-identity is not
satisfied.

Definition 2.13 (Representation). Let A be an ∗-algebra. Then a pair (π,H) is called a
∗-representation of A if H is a Hilbert space and π : A → L(H) is a ∗-homomorphism,
i.e.,

(i) π is linear;

(ii) π is multiplicative, i.e., π(f ? g) = π(f )π(g) holds for all f , g ∈ A;

(iii) π preserves the involution, i.e., π(f ∗) = π(f )∗ holds for all f ∈ A where π(f )∗ is the
adjoint operator of π(f ) ∈ L(H).

A family of representations (πx,Hx)x∈X is called faithful whenever the family is injective,
i.e., f = 0 if and only if πx(f ) = 0 for all x ∈ X.
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Definition 2.14 (invertible). Let A be a unital Banachalgebra. An element a ∈ A is said
to be invertible, if there is an element b ∈ A such that a ? b = b ? a = e.

Remark 2.15. The inverse b of a ∈ A is unique (if it exists) since b = b ? (a ? b′) =
(b ? a) ? b′ = b′.

Definition 2.16 (spectrum). Let A be a unital Banachalgebra and a ∈ A. The set

σ(a) := {λ ∈ C |λe− a not invertible}

is called spectrum of a and ρ(a) := C \ σ(a) is the resolvent.

We say that a ∈ A in a ∗-algebra A is

• self-adjoint if a∗ = a;

• normal if a∗ ? a = a ? a∗;

2.2 Dynamical systems and the (reduced) C∗-algebra

In this section, we introduce the reduced C∗-algebra associated with a dynamical system.
There are different ways to define this C∗-algebra. We follow the construction in the more
general setting of groupoid C∗-algebra. The classical reference for groupoid C∗-algebras
is [Ren87, Ren91]. The reader is referred also to [Bec16, Section 3.4, Section 3.5] and
references therein. The groupoid structure associated with a dynamical system is called
transformation group groupoid.
A group G is a set equipped with a composition ◦ : G × G → G, an inverse −1 : G → G
and a unit e ∈ G such that

• ◦ is associative;

• g ◦ g−1 = g−1 ◦ g = e for all g ∈ G.

If, additionally, G is equipped with a topology, G is a topological group if the composition
and the inverse are continuous.

Definition 2.17. The tuple (X,G) is called a (discrete) dynamical system if X is a
compact second countable Hausdorff space, G is a countable group (equipped with discrete
topology) and there is an α : G × X → X is continuous and it satisfies α(e, x) = x and
α
(
g, α(h, x)

)
= α(gh, x) for all x ∈ X and g, h ∈ G.

Specifically, the group G acts on X by homeomorphism. For simplification, we write gx
for α(g, x). Now, we define a C∗-algebra associated with a dynamical system (X,G). A
subset Y ⊆ X is called invariant if gY := {gy|y ∈ Y } ⊆ Y for all g ∈ G.
Every countable group admits a unique Haar measure λ given by the counting measure∑

g∈G δg. A probability measure µ on the Borel σ-algebra of X is called G-invariant if

µ(gF ) = µ(F ) for all Borel measurable sets F ⊆ X and g ∈ G. Furthermore, µ is said
to be ergodic if µ(Y ) is zero or one for all invariant subsets Y ⊆ X. A dynamical system
(X,G) is called uniquely ergodic if (X,G) admits exactly one G-invariant measure on X.

Remark 2.18. A fundamental statement within the theory of dynamical systems is that
the space of invariant probability measure (equipped with the weak-∗ topology) is a convex,
closed subset. Its extreme point are given by the ergodic measure. Thus, this set is
the closed convex hull of the ergodic measures (Krein-Milman theorem). Note that the
existence of invariant measures is an assumption.
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Consider Cc(X×G) the set of continuous functions a : X×G→ C with compact support.
This space is usually equipped with the inductive limit topology (i.e., a net (aι)ι converges
to a ∈ Cc(X ×G) if there is a compact K ⊆ X ×G and a ι0 such that supp(aι) ⊆ K for
all ι ≥ ι0 and (aι) converges uniformly on K to a).
The set Cc(X ×G) gets a ∗-algebra if equipped with the convolution

(a ? b)(x, g) :=
∑
h∈G

a(x, h) b
(
h−1x, h−1g

)
(convolution)

a∗(x, g) := a
(
g−1x, g−1h

)
(involution)

We can make the ∗-algebra to a C∗-algebra by representing it by suitable operators on
the Hilbert space `2(G) and completing the space with the induced norm. For x ∈ X, the
left-regular representation πx : Cc(X ×G)→ L

(
`2(G)

)
is defined by(

πx(a)ψ
)
(g) :=

∑
h∈G

a
(
g−1x, g−1h

)
ψ(h) , ψ ∈ `2(G), g ∈ G,

for a ∈ Cc(X ×G).

Proposition 2.19. The family (πx)x∈X defines a faithful ∗-representation. In particular,
πx(a) defines a linear, bounded operator on `2(G) for each a ∈ Cc(X × G) and x ∈ X.
The operator norm ‖πx(a)‖ is bounded by

C(a) := ]{g ∈ G | ∃x ∈ X s.t. a(x, g) 6= 0} · ‖a‖∞.

Proof. You can find the proof in the more general case of groupoids in [Ren80, Propo-
sition II.1.1, II.1.4, II.1.9], see also [Bec16, Section 3.4, Section 3.5]. Let us give here a
simplified direct proof. That πx is a ∗-representation follows by direct algebraic compu-
tations. Note that all involved sums are finite since a ∈ Cc(X × G) has finite support
in G. That πx(a) defines a bounded operator follows by a short computation invoking
Cauchy-Schwarz inequality:

‖πx(a)ψ‖2 =
∑
g̃∈G

∣∣(πx(a)ψ)(g̃)
∣∣2

≤
∑
g̃∈G

(∑
h∈G

∣∣a(g̃−1x, g̃−1h)∣∣ 12 · ∣∣a(g̃−1x, g̃−1h)∣∣ 12 |ψ(h)|

)2

≤
∑
g̃∈G

(∑
h∈G

∣∣a(g̃−1x, g̃−1h)∣∣)(∑
h∈G

∣∣a(g̃−1x, g̃−1h)∣∣|ψ(h)|2
)

≤C(a) ·

(∑
h∈G

(∑
g̃∈G

∣∣a(g̃−1x, g̃−1h)∣∣) |ψ(h)|2
)

≤C(a)2‖ψ‖2

Finally it is left to show that the family of representations (πx)x∈X) is faithful. Clearly,
if a = 0 then πx(a) = 0 for all x ∈ X. For the converse direction, let πx(a) = 0 for all
x ∈ X and assume that a 6= 0 which we will show to be a contradiction. By assumption
there is a tuple (y, g) ∈ X ×G such that a(y, g) 6= 0. Thus,(

πy(a)δg
)
(g̃) =

∑
h∈G

a
(
g̃−1y, g̃−1h

)
δg(h) = a

(
g̃−1y, g̃−1g

) g̃=e
= a(y, g) 6= 0
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follows for g̃ = e. Hence,

‖πy(a)‖ ≥ ‖πy(a)δ(g)‖ =

√∑
g̃∈G

∣∣(πy(a)δg
)
(g̃)
∣∣2 ≥ ∣∣(πy(a)δg

)
(e)
∣∣ = |a(y, g)| > 0

is derived being a contradiction. �

Remark 2.20. It is worth mentioning that ]{g ∈ G | ∃x ∈ X s.t. a(x, g) 6= 0} is finite
for a ∈ Cc(X ×G) since G is countable and a has compact support.

With this at hand, we define a norm on Cc(X ×G) by ‖a‖ := supx∈X ‖πx(a)‖. This norm
is also called reduced norm.

Proposition 2.21. The ∗-algebra Cc(X×G) equipped with the norm ‖a‖ := supx∈X ‖πx(a)‖
is a normed unital ∗-algebra with unit I := χ

X × δe. Furthermore, the estimate ‖a‖2 ≤
‖a∗ ? a‖ holds.

Proof. A short computation yields

‖a ? b‖ = sup
x∈X
‖πx(a ? b)‖ = sup

x∈X
‖πx(a) πx(b)‖ ≤ sup

x∈X
‖πx(a)‖ ‖πx(b)‖ ≤ ‖a‖ ‖b‖,

implying that (Cc(X×G), ‖·‖) is a normed algebra. Similarly, the ∗-identity follows as the
operator norm fulfills it. For a ∈ Cc(X×G), a short computation leads to a?I = I ?a = a.
�

The completion C∗red(XoG) of Cc(X×G) with respect to the reduced norm is a C∗-algebra.

Remark 2.22. If G is not discrete or X is not compact, then C∗red(XoG) has not a unit.
(this is actually a characterization of this C∗-algebra being unital.)

The previous considerations lead us to the theory of random operator families. Let (X,G)
be a discrete dynamical system. Every element a ∈ C∗red(XoG) induces an operator family
A := (Ax)x∈X with Ax := πx(a) (convolution operator/integral operator with kernel a).

Proposition 2.23. Let (X,G) be a discrete dynamical system. Consider an operator
family A := (Ax)x∈X with Ax := πx(a) induced by a normal element a ∈ C∗red(X o G).
Then the following assertions hold.

(a) The spectrum σ(a) is equal to the union
⋃
x∈X σ(Ax).

(b) The family of operators is equivariant/covariant, i.e., the equation

Ah.x = UhAxUh−1

holds for all h ∈ G where Uh : `2(G)→ `2(G), Uhψ(g) := ψ(h−1g) is unitary.

(c) The map X 3 x 7→ Ax is strongly continuous on L(`2(G)), i.e., the limit

lim
y→x

∥∥(Ay − Ax)ψ∥∥
is equal to zero for all ψ ∈ `2(G) and x ∈ X.

Proof. (a): For the proof see [NP15]. If π is a ∗-representation of a unital C∗-algebra
A, then σ(π(a)) ⊆ σ(a). (If a − λ ∈ A is invertible, then π(a) − λ is also invertible and
so ρ(a) ⊆ ρ(π(a)).) The converse is proven by contradiction. One shows that ⊕x∈Xπx :
C∗red(X o G) → ⊕x∈XL(`2(G)) is injective, surjective (on the image) and continuous (so

a C∗-isomorphism and so it preserves the spectrum. If now λ ∈ σ(a) \
⋃
x∈X σ(Ax), the

inverse πx(a − λ)−1 is well-defined for all x ∈ X and ‖πx(a − λ)−1‖ is uniformly (in X)
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bounded as λ has a positive distance to
⋃
x∈X σ(Ax). Consequently, ⊕x∈Xπx(a − λ) is

invertible. Since ⊕x∈Xπx is an isomorphism, a− λ is also invertible, a contradiction.

(b): Let x ∈ X and h ∈ G. Then, for every ψ ∈ `2(G) and g ∈ G, a short computation
leads to

(Hh.xψ) (g) =
∑
h̃∈G

a
(
g−1hx

∣∣ g−1h̃) · ψ(h̃)

=
∑
h̃∈G

a
(

(h−1g)−1x
∣∣ (h−1g)−1 h−1h̃

)
· (Uh−1ψ) (h−1h̃)

= (πx(a) (Uh−1ψ)) (h−1g)

= (UhAxUh−1ψ) (g) .

(c): Since Cc(X × G) ⊆ C∗red(X o G) is a dense subset, it suffices to show the strong
continuity for all normal elements of Cc(X ×G). Let a ∈ Cc(X ×G) be normal. First, (i)
it is shown that

∥∥(πx(a)− πy(a)
)
ψ
∥∥ tends to zero if x for all ψ ∈ Cc(G). Secondly, (ii) a

3ε-argument leads to the desired strong continuity of the map X 3 x 7→ πx(a).

(i): Consider a ψ ∈ Cc(G). Then, for x, y ∈ X, the equation

‖(πx(a)− πy(a))ψ‖2 =
∑
g∈G

∣∣∣∣∣∣
∑
h̃∈G

(
a
(
g−1x

∣∣g−1h̃)− a(g−1y∣∣g−1h̃)) · ψ(h̃)

∣∣∣∣∣∣
2

holds. Since a ∈ Cc(X ×G) and ψ ∈ Cc(G) are compactly supported, the sums are finite.
Thus, the continuity of a implies that the field of bounded normal operators (πx(a))x is
strongly continuous.

(ii): Let ϕ ∈ `2(G) and ε > 0. Since Cc(G) ⊆ `2(G) is dense, there is a ψ ∈ Cc(G) such
that ‖ψ − ϕ‖ < ε

3C
where C := ‖a‖ = supx∈X ‖πx(a)‖ < ∞. Then choose, by (i), an

open neighborhood U ⊆ X of x such that
∥∥(πx(a) − πy(a)

)
ψ
∥∥ < ε

3
holds for all y ∈ U .

Consequently, the estimate∥∥(πx(a)− πy(a)
)
ϕ
∥∥ ≤ ∥∥πx(a)

∥∥·∥∥ϕ− ψ∥∥+
∥∥(πx(a)− πy(a)

)
ψ
∥∥+

∥∥πy(a)
∥∥·∥∥ϕ− ψ∥∥ < ε

is derived for all y ∈ U . �

Remark 2.24. If the group G is amenable (or acts amenable on X) then the identity
σ(a) =

⋃
x∈X σ(Ax) holds, [Exe14, NP15].

Corollary 2.25. Let x ∈ X be such that Orb(x) := {gx | g ∈ G} is dense in X. Then
σ(a) = σ(Ax) holds for every self-adjoint a ∈ C∗red(X oG).

Proof. Let y ∈ X. Since the orbit Orb(x) ⊆ X is dense, there exists a sequence (gn) ⊆ G
such that gnx→ y. Thus, by the strong continuity we get

σ(Ay) ⊆ limn→∞σ(Agnx) :=
⋂
n∈N

(⋃∞

m=n
σ(Agmx)

)
.

Using the equivariance, we get σ(Ay) ⊆ σ(Ax). Hence,

σ(a) =
⋃
y∈X

σ(Ay) ⊆ σ(Ax) ⊆ σ(A)

finishes the proof. �
The section is finished by characterizing the constancy of the spectrum by the minimality
of the dynamical system. Recall that a dynamical system (X,G) is minimal if for every
x ∈ X, its orbit Orb(x) := {gx | g ∈ G} ⊆ X is dense.
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Proposition 2.26. Let (X,G) be a discrete dynamical system. Then the following asser-
tions are equivalent.

(i) The dynamical system (X,G) is minimal.

(ii) For every self-adjoint a ∈ C∗red(X o G), the spectrum σ
(
πx(a)

)
is independent of

x ∈ X, i.e., σ
(
πx(a)

)
= σ

(
πy(a)

)
holds for all x, y ∈ X.

(iii) The representation πx is faithful for every x ∈ X.

Proof. The implication (i) ⇒ (ii) is well-known fact invoking Corollary 2.25, see e.g.
[CFKS87, BIST89, Jit95, Len99, LS03]. For the proof of the statement, the reader is
referred to [Bec16, Theorem 3.6.9] which follows the lines of [LS03, Theorem4.3]. �

2.3 Example: Hamiltonians on Z

2.4 The Pastur-Shubin formula

2.4.1 A short reminder on direct integral theory

2.4.2 IDS for dynamical systems

2.4.3 The classical approach
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