The connection of the K-theory with the Gap-labeling theorem of Schrödinger operators

Siegfried Beckus

Israel Institute of Technology (24th August 2017)

Abstract This notes is based on a lecture given at the Israel Institute of Technology in Haifa. The reader is invited to send comments and remarks to the author to improve this notes.

Contents

1	Introduction	1		
	1.1 Motivation - Schrödinger operators	1		
	1.2 The integrated density of states (IDS)			
	1.3 Strategy			
2	C^* -algebras associated with dynamical systems and the integrated den-			
	sity of states	3		
	2.1 C^* -algebras	3		
	2.2 Dynamical systems and the (reduced) C^* -algebra	5		
	2.3 Example: Hamiltonians on \mathbb{Z}	9		
	2.4 The Pastur-Shubin formula	9		
	2.4.1 A short reminder on direct integral theory	9		
	2.4.2 IDS for dynamical systems	9		
	2.4.3 The classical approach	9		
3	K-theory	10		
4	Gap-labeling theorem	11		
5	5 Application - The Fibonacci sequence			

1 Introduction

1.1 Motivation - Schrödinger operators

- solid state physics: long time behavior of particle
- ⇒ (QM) study spectral theory of Schrödinger operators

$$H := -\Delta + V$$
 (self-adjoint)

continuous model

H unbounded

Example on $L^2(\mathbb{R})$

$$H = -\frac{d^2}{dx^2} + V$$

discrete model

H bounded (depends on vertex degree)

Example on $\ell^2(\mathbb{Z})$

$$\frac{d}{dx}f(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$$

$$\frac{d^2}{dx^2} f(x_0) \approx \frac{\left(f(x_0+h) - f(x_0)\right) - \left(f(x_0+2h) - f(x_0+h)\right)}{h^2}$$

$$\stackrel{h=1}{=} -f(x_0) - f(x_0+2) + 2 \cdot f(x_0+1)$$

$$(H\psi)(n) := \psi(n-1) + \psi(n+1) + V(n)\psi(n)$$

1.2 The integrated density of states (IDS)

• the following approach has been widely analyzed as discussed later, see e.g. [Bel92, Len02, LS05, LMV08, Ele08, LV09, LSV11, Pog14, PS16]

2 1. Introduction

• consider the Schrödinger operator $H: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ defined by

$$(H\psi)(n) := \psi(n-1) + \psi(n+1) + V(n)\psi(n)$$

- take an exhausting sequence $F_N := \{-N, -N+1, \dots, N\} \subseteq \mathbb{Z}, N \in \mathbb{N}$, and denote by H_{F_N} the restriction of H to F_N with Dirichlet boundary conditions
- consider

$$N_{F_N}(E) := \sharp \{ \lambda \in \mathbb{R} \mid \lambda \text{ eigenvalue of } H_{F_N} \text{ and } \lambda \leq E \}$$

Definition 1.1. The limit (if it exists)

$$N(E) := \lim_{N \to \infty} \frac{N_{F_N}(E)}{\sharp F_N}$$

is called integrated density of states (IDS) of H.

- $\chi(H_{F_N} \leq E)$ is the eigenprojection onto the eigenspace of H_{F_N} with energies less or equal than E
- then $N_{F_N}(E) = tr(\chi(H_{F_N} \leq E))$

- People discovered in examples that the spectral gaps can be labeled such that the labeling is stable under small perturbations of the Hamiltonian.
- Based on this experiences Jean Bellissard realized that the Gap labeling should be of topological nature. Thus, he connected the gap labels with the K-theory (K_0 -group) and the trace of associated C^* -algebras.

<u>Aim:</u> Determine the gap labels of a given Schrödinger operator.

1.3 Strategy

- dynamical approach \rightarrow view operators as suitable integral operators with kernels on the dynamical system (C^* -algebra approach)
- Pastur-Shubin formula: write N(E) as a trace of the corresponding eigenprojections
- under suitable ergodicity assumptions the trace is given by an integral over the (unique) ergodic measure
- define a group structure on the "equivalence classes" (by unitary) of the eigenprojection (K_0 -group)
- then the possible gap labels are contained in the image of the trace of the K_0 group

2 C^* -algebras associated with dynamical systems and the integrated density of states

2.1 C^* -algebras

In the following section, funcamental notions of C^* -algebras are introduced. This is just a short summary. The reader is referred to [Dix77, Dix81, Mur90, Bla17] and references therein for further background.

Definition 2.1 (algebra). An algebra \mathfrak{A} is a vector space (over \mathbb{C}) with multiplication $\star: \mathfrak{A} \times \mathfrak{A} \to \mathfrak{A}, (a,b) \mapsto a \cdot b$, satisfying

• $a \star (b \star c) = (a \star b) \star c$ (associative)

• $(a+b) \star c = a \star c + b \star c$ $a \star (b+c) = a \star b + a \star c$ (distributive)

• $\alpha \cdot (a \star b) = (\alpha \cdot a) \star b = a \star (\alpha \cdot b)$

for all $a, b, c \in \mathfrak{A}$ and $\alpha \in \mathbb{C}$. An algebra A is called unital if there is an $e \in \mathfrak{A}$ such that $e \star a = a \star e = a$ for all $a \in \mathfrak{A}$. Then e is called unit.

Remark 2.2. If \mathfrak{A} is a unital algebra, then the unit e is unique. ($e = e \star e' = e'$) In general, the multiplication is not commutative. An algebra \mathfrak{A} is said to be commutative if $a \star b = b \star a$ for all $a, b \in \mathfrak{A}$ and otherwise A is noncommutative.

Definition 2.3 (Banachalgebra). A tuple $(\mathfrak{A}, \|\cdot\|)$ is called a normed algebra if \mathfrak{A} is an algebra and the map $\|\cdot\|: \mathfrak{A} \to [0, \infty)$ is a norm satisfying $\|a \star b\| \leq \|a\| \|b\|$ for all $a, b \in \mathfrak{A}$. If \mathfrak{A} is additional unital, we require $\|e\| = 1$. Furthermore, a normed algebra $(\mathfrak{A}, \|\cdot\|)$ is called Banachalgebra if $(\mathfrak{A}, \|\cdot\|)$ is a complete space.

Example 2.4. The normed space $(\ell^1(\mathbb{Z}), \|\cdot\|_1)$ with $\|\psi\|_1 := \sum_{n \in \mathbb{Z}} |\psi(n)|$ and multiplication

$$(\psi \star \varphi)(n) := \sum_{k \in \mathbb{Z}} \psi(n-k)\varphi(k)$$

is a (commutative) Banachalgebra with unit $\delta_0 \in \ell^1(\mathbb{Z})$ defined by $\delta_0(n) = 1$ if n = 1 and otherwise $\delta_0(n) = 0$.

Remark 2.5. The constraint $||a \star b|| \le ||a|| ||b||$ guarantees the continuity of the multiplication on A.

Definition 2.6 (*-algebra). Let \mathfrak{A} be an algebra. A map $*: \mathfrak{A} \to \mathfrak{A}$ is called involution if

- $(a + \alpha b)^* = a^* + \overline{\alpha}b^*$
- $\bullet \ (a \star b)^* = b^* \star a^*$
- $(a^*)^* = a$

holds for all $a, b \in \mathfrak{A}$ and $\alpha \in \mathbb{C}$. Then $(\mathfrak{A}, *)$ is called *-algebra / involutive algebra.

Definition 2.7 (C^* -algebra). Let $(\mathfrak{C}, *, \|\cdot\|)$ be a *-Banachalgebra. Then \mathfrak{C} is called a C^* -algebra if

$$||a||^2 \le ||a^* \star a||, \qquad a \in \mathfrak{C},$$

holds.

Remark 2.8. The constraint $||a||^2 \le ||a^* \star a||$ is equivalent to $||a||^2 = ||a^* \star a||$. For a C^* -algebra, $*: \mathfrak{C} \to \mathfrak{C}$ is isometric (i.e., $||a^*|| = ||a||$) since

$$||a||^2 \le ||a^* \star a|| \le ||a^*|| \, ||a|| \implies ||a|| \le ||a^*||.$$

Example 2.9 (Complex plane). The set $\mathfrak{C} = \mathbb{C}$ with pointwise multiplication and involution defined by complex conjugation is a unital (commutative) C^* -algebra with unit e = 1 where $\|\alpha\| := |\alpha|$.

Example 2.10. Let X be a topological space (locally compact). The set $\mathfrak{C} = \mathcal{C}_0(X)$ with pointwise multiplication, uniform norm $||f||_{\infty} := \sup_{x \in X} |f(x)|$ and involution defined by complex conjugation is a (commutative) C^* -algebra. It is unital if and only if X is a compact space.

Example 2.11 (Linear bounded operators). Let \mathcal{H} be a Hilbert space. Let $\mathcal{L}(\mathcal{H})$ be the set of all linear, bounded operators $T: \mathcal{H} \to \mathcal{H}$ with multiplication defined by composition, involution defined by the adjoint of an operator and operator norm $||T|| := \sup_{\|\psi\| \le 1} ||T\psi\||$. Then $\mathfrak{C} := \mathcal{L}(\mathcal{H})$ is a (noncommutative) C^* -algebra. For $T \in \mathcal{L}(\mathcal{H})$, the norm closure of the set $\{p(T) \mid p \text{ polynomial}\}$ is a (commutative) C^* -subalgebra.

Example 2.12. The normed space $(\ell^1(\mathbb{Z}), \|\cdot\|_1)$ with $\|\psi\|_1 := \sum_{n \in \mathbb{Z}} |\psi(n)|$ and convolution

$$(\psi \star \varphi)(n) := \sum_{k \in \mathbb{Z}} \psi(n-k)\varphi(k)$$

is a (commutative) Banachalgebra with unit $\delta_0 \in \ell^1(\mathbb{Z})$ defined by $\delta_0(n) = 1$ if n = 1 and otherwise $\delta_0(n) = 0$. The map $*: \ell^1(\mathbb{Z}) \to \ell^1(\mathbb{Z})$ defined by $\psi^*(n) := \overline{\psi(-n)}$ defines a involution. Hence, $(\ell^1(\mathbb{Z}), *, \|\cdot\|_1)$ is a *-Banachalgebra but not a C^* -algebra: Let $\psi \in \ell^1(\mathbb{Z})$ be defined by $\psi(0) = 1, \psi(1) = \psi(2) = -1$ and $\psi(n) = 0$ if $n \in \mathbb{Z} \setminus \{0, 1, 2\}$. Then

$$(\psi^* \star \psi)(n) = \begin{cases} 3, & n = 0, \\ -1, & n = \pm 2, \\ 0, & \text{otherwise} \end{cases}$$

holds. Thus, $\|\psi^* \star \psi\| = 5$ while $\|\psi\|^2 = 9$. Consequently, the C^* -identity is not satisfied.

Definition 2.13 (Representation). Let \mathfrak{A} be an *-algebra. Then a pair (π, \mathcal{H}) is called a *-representation of \mathfrak{A} if \mathcal{H} is a Hilbert space and $\pi: \mathfrak{A} \to \mathcal{L}(\mathcal{H})$ is a *-homomorphism, i.e.,

- (i) π is linear;
- (ii) π is multiplicative, i.e., $\pi(f \star g) = \pi(f)\pi(g)$ holds for all $f, g \in \mathfrak{A}$;
- (iii) π preserves the involution, i.e., $\pi(f^*) = \pi(f)^*$ holds for all $f \in \mathfrak{A}$ where $\pi(f)^*$ is the adjoint operator of $\pi(f) \in \mathcal{L}(\mathcal{H})$.

A family of representations $(\pi^x, \mathcal{H}_x)_{x \in X}$ is called faithful whenever the family is injective, i.e., f = 0 if and only if $\pi^x(f) = 0$ for all $x \in X$.

Definition 2.14 (invertible). Let \mathfrak{A} be a unital Banachalgebra. An element $a \in \mathfrak{A}$ is said to be invertible, if there is an element $b \in \mathfrak{A}$ such that $a \star b = b \star a = e$.

Remark 2.15. The inverse b of $a \in \mathfrak{A}$ is unique (if it exists) since $b = b \star (a \star b') = (b \star a) \star b' = b'$.

Definition 2.16 (spectrum). Let \mathfrak{A} be a unital Banachalgebra and $a \in \mathfrak{A}$. The set

$$\sigma(a) := \{ \lambda \in \mathbb{C} \mid \lambda e - a \text{ not invertible} \}$$

is called spectrum of a and $\rho(a) := \mathbb{C} \setminus \sigma(a)$ is the resolvent.

We say that $a \in \mathfrak{A}$ in a *-algebra \mathfrak{A} is

- self-adjoint if $a^* = a$;
- normal if $a^* \star a = a \star a^*$;

2.2 Dynamical systems and the (reduced) C^* -algebra

In this section, we introduce the reduced C^* -algebra associated with a dynamical system. There are different ways to define this C^* -algebra. We follow the construction in the more general setting of groupoid C^* -algebra. The classical reference for groupoid C^* -algebras is [Ren87, Ren91]. The reader is referred also to [Bec16, Section 3.4, Section 3.5] and references therein. The groupoid structure associated with a dynamical system is called transformation group groupoid.

A group G is a set equipped with a composition $\circ: G \times G \to G$, an inverse $^{-1}: G \to G$ and a unit $e \in G$ such that

- • is associative;
- $g \circ g^{-1} = g^{-1} \circ g = e$ for all $g \in G$.

If, additionally, G is equipped with a topology, G is a topological group if the composition and the inverse are continuous.

Definition 2.17. The tuple (X,G) is called a (discrete) dynamical system if X is a compact second countable Hausdorff space, G is a countable group (equipped with discrete topology) and there is an $\alpha: G \times X \to X$ is continuous and it satisfies $\alpha(e,x) = x$ and $\alpha(g,\alpha(h,x)) = \alpha(gh,x)$ for all $x \in X$ and $g,h \in G$.

Specifically, the group G acts on X by homeomorphism. For simplification, we write gx for $\alpha(g,x)$. Now, we define a C^* -algebra associated with a dynamical system (X,G). A subset $Y \subseteq X$ is called *invariant* if $gY := \{gy|y \in Y\} \subseteq Y$ for all $g \in G$.

Every countable group admits a unique Haar measure λ given by the counting measure $\sum_{g \in G} \delta_g$. A probability measure μ on the Borel σ -algebra of X is called G-invariant if $\mu(gF) = \mu(F)$ for all Borel measurable sets $F \subseteq X$ and $g \in G$. Furthermore, μ is said to be ergodic if $\mu(Y)$ is zero or one for all invariant subsets $Y \subseteq X$. A dynamical system (X, G) is called $uniquely\ ergodic$ if (X, G) admits exactly one G-invariant measure on X.

Remark 2.18. A fundamental statement within the theory of dynamical systems is that the space of invariant probability measure (equipped with the weak-* topology) is a convex, closed subset. Its extreme point are given by the ergodic measure. Thus, this set is the closed convex hull of the ergodic measures (Krein-Milman theorem). Note that the existence of invariant measures is an assumption.

Consider $C_c(X \times G)$ the set of continuous functions $a: X \times G \to \mathbb{C}$ with compact support. This space is usually equipped with the inductive limit topology (i.e., a net $(a_\iota)_\iota$ converges to $a \in C_c(X \times G)$ if there is a compact $K \subseteq X \times G$ and a ι_0 such that $\operatorname{supp}(a_\iota) \subseteq K$ for all $\iota \geq \iota_0$ and (a_ι) converges uniformly on K to a).

The set $C_c(X \times G)$ gets a *-algebra if equipped with the convolution

$$(a \star b)(x,g) := \sum_{h \in G} a(x,h) b(h^{-1}x, h^{-1}g)$$

$$a^*(x,g) := \overline{a(g^{-1}x, g^{-1}h)}$$
(convolution)
(involution)

We can make the *-algebra to a C^* -algebra by representing it by suitable operators on the Hilbert space $\ell^2(G)$ and completing the space with the induced norm. For $x \in X$, the left-regular representation $\pi^x : \mathcal{C}_c(X \times G) \to \mathcal{L}(\ell^2(G))$ is defined by

$$(\pi^x(a)\psi)(g) := \sum_{h \in G} a(g^{-1}x, g^{-1}h) \psi(h), \qquad \psi \in \ell^2(G), g \in G,$$

for $a \in \mathcal{C}_c(X \times G)$.

Proposition 2.19. The family $(\pi^x)_{x \in X}$ defines a faithful *-representation. In particular, $\pi^x(a)$ defines a linear, bounded operator on $\ell^2(G)$ for each $a \in \mathcal{C}_c(X \times G)$ and $x \in X$. The operator norm $\|\pi^x(a)\|$ is bounded by

$$C(a) := \sharp \{g \in G \mid \exists x \in X \text{ s.t. } a(x,g) \neq 0\} \cdot \|a\|_{\infty}.$$

Proof. You can find the proof in the more general case of groupoids in [Ren80, Proposition II.1.1, II.1.4, II.1.9], see also [Bec16, Section 3.4, Section 3.5]. Let us give here a simplified direct proof. That π^x is a *-representation follows by direct algebraic computations. Note that all involved sums are finite since $a \in \mathcal{C}_c(X \times G)$ has finite support in G. That $\pi^x(a)$ defines a bounded operator follows by a short computation invoking Cauchy-Schwarz inequality:

$$\|\pi^{x}(a)\psi\|^{2} = \sum_{\tilde{g}\in G} \left| (\pi^{x}(a)\psi)(\tilde{g}) \right|^{2}$$

$$\leq \sum_{\tilde{g}\in G} \left(\sum_{h\in G} \left| a(\tilde{g}^{-1}x, \tilde{g}^{-1}h) \right|^{\frac{1}{2}} \cdot \left| a(\tilde{g}^{-1}x, \tilde{g}^{-1}h) \right|^{\frac{1}{2}} |\psi(h)| \right)^{2}$$

$$\leq \sum_{\tilde{g}\in G} \left(\sum_{h\in G} \left| a(\tilde{g}^{-1}x, \tilde{g}^{-1}h) \right| \right) \left(\sum_{h\in G} \left| a(\tilde{g}^{-1}x, \tilde{g}^{-1}h) \right| |\psi(h)|^{2} \right)$$

$$\leq C(a) \cdot \left(\sum_{h\in G} \left(\sum_{\tilde{g}\in G} \left| a(\tilde{g}^{-1}x, \tilde{g}^{-1}h) \right| \right) |\psi(h)|^{2} \right)$$

$$\leq C(a)^{2} \|\psi\|^{2}$$

Finally it is left to show that the family of representations $(\pi^x)_{x\in X}$ is faithful. Clearly, if a=0 then $\pi^x(a)=0$ for all $x\in X$. For the converse direction, let $\pi^x(a)=0$ for all $x\in X$ and assume that $a\neq 0$ which we will show to be a contradiction. By assumption there is a tuple $(y,g)\in X\times G$ such that $a(y,g)\neq 0$. Thus,

$$(\pi^y(a)\delta_g)(\tilde{g}) = \sum_{h \in G} a(\tilde{g}^{-1}y, \tilde{g}^{-1}h)\delta_g(h) = a(\tilde{g}^{-1}y, \tilde{g}^{-1}g) \stackrel{\tilde{g}=e}{=} a(y, g) \neq 0$$

follows for $\tilde{g} = e$. Hence,

$$\|\pi^{y}(a)\| \ge \|\pi^{y}(a)\delta(g)\| = \sqrt{\sum_{\tilde{g}\in G} \left| (\pi^{y}(a)\delta_{g})(\tilde{g}) \right|^{2}} \ge \left| (\pi^{y}(a)\delta_{g})(e) \right| = |a(y,g)| > 0$$

is derived being a contradiction.

Remark 2.20. It is worth mentioning that $\sharp\{g \in G \mid \exists x \in X \text{ s.t. } a(x,g) \neq 0\}$ is finite for $a \in \mathcal{C}_c(X \times G)$ since G is countable and a has compact support.

With this at hand, we define a norm on $C_c(X \times G)$ by $||a|| := \sup_{x \in X} ||\pi^x(a)||$. This norm is also called *reduced norm*.

Proposition 2.21. The *-algebra $C_c(X \times G)$ equipped with the norm $||a|| := \sup_{x \in X} ||\pi^x(a)||$ is a normed unital *-algebra with unit $I := \chi_X \times \delta_e$. Furthermore, the estimate $||a||^2 \le ||a^* \star a||$ holds.

Proof. A short computation yields

$$\|a\star b\|=\sup_{x\in X}\|\pi^x(a\star b)\|=\sup_{x\in X}\|\pi^x(a)\,\pi^x(b)\|\leq \sup_{x\in X}\|\pi^x(a)\|\,\|\pi^x(b)\|\leq \|a\|\,\|b\|,$$

implying that $(\mathcal{C}_c(X \times G), \|\cdot\|)$ is a normed algebra. Similarly, the *-identity follows as the operator norm fulfills it. For $a \in \mathcal{C}_c(X \times G)$, a short computation leads to $a \star I = I \star a = a$.

The completion $\mathcal{C}^*_{red}(X \rtimes G)$ of $\mathcal{C}_c(X \times G)$ with respect to the reduced norm is a C^* -algebra.

Remark 2.22. If G is not discrete or X is not compact, then $C^*_{red}(X \rtimes G)$ has not a unit. (this is actually a characterization of this C^* -algebra being unital.)

The previous considerations lead us to the theory of random operator families. Let (X, G) be a discrete dynamical system. Every element $a \in \mathcal{C}^*_{red}(X \rtimes G)$ induces an operator family $A := (A_x)_{x \in X}$ with $A_x := \pi^x(a)$ (convolution operator/integral operator with kernel a).

Proposition 2.23. Let (X,G) be a discrete dynamical system. Consider an operator family $A := (A_x)_{x \in X}$ with $A_x := \pi^x(a)$ induced by a normal element $a \in \mathcal{C}^*_{red}(X \rtimes G)$. Then the following assertions hold.

- (a) The spectrum $\sigma(a)$ is equal to the union $\overline{\bigcup_{x \in X} \sigma(A_x)}$.
- (b) The family of operators is equivariant/covariant, i.e., the equation

$$A_{h,x} = U_h A_x U_{h^{-1}}$$

holds for all $h \in G$ where $U_h : \ell^2(G) \to \ell^2(G), \ U_h \psi(g) := \psi(h^{-1}g)$ is unitary.

(c) The map $X \ni x \mapsto A_x$ is strongly continuous on $\mathcal{L}(\ell^2(G))$, i.e., the limit

$$\lim_{y\to x} \left\| \left(A_y - A_x \right) \psi \right\|$$

is equal to zero for all $\psi \in \ell^2(G)$ and $x \in X$.

Proof. (a): For the proof see [NP15]. If π is a *-representation of a unital C^* -algebra \mathfrak{A} , then $\sigma(\pi(a)) \subseteq \sigma(a)$. (If $a - \lambda \in \mathfrak{A}$ is invertible, then $\pi(a) - \lambda$ is also invertible and so $\rho(a) \subseteq \rho(\pi(a))$.) The converse is proven by contradiction. One shows that $\bigoplus_{x \in X} \pi^x : C^*_{red}(X \rtimes G) \to \bigoplus_{x \in X} \mathcal{L}(\ell^2(G))$ is injective, surjective (on the image) and continuous (so a C^* -isomorphism and so it preserves the spectrum. If now $\lambda \in \sigma(a) \setminus \overline{\bigcup_{x \in X} \sigma(A_x)}$, the inverse $\pi^x(a - \lambda)^{-1}$ is well-defined for all $x \in X$ and $\|\pi^x(a - \lambda)^{-1}\|$ is uniformly (in X)

bounded as λ has a positive distance to $\overline{\bigcup_{x\in X}\sigma(A_x)}$. Consequently, $\bigoplus_{x\in X}\pi^x(a-\lambda)$ is invertible. Since $\bigoplus_{x\in X}\pi^x$ is an isomorphism, $a-\lambda$ is also invertible, a contradiction.

(b): Let $x \in X$ and $h \in G$. Then, for every $\psi \in \ell^2(G)$ and $g \in G$, a short computation leads to

$$(H_{h,x}\psi)(g) = \sum_{\tilde{h}\in G} a\left(g^{-1}hx | g^{-1}\tilde{h}\right) \cdot \psi(\tilde{h})$$

$$= \sum_{\tilde{h}\in G} a\left((h^{-1}g)^{-1}x | (h^{-1}g)^{-1}h^{-1}\tilde{h}\right) \cdot (U_{h^{-1}}\psi)(h^{-1}\tilde{h})$$

$$= (\pi^{x}(a)(U_{h^{-1}}\psi))(h^{-1}g)$$

$$= (U_{h}A_{x}U_{h^{-1}}\psi)(g).$$

(c): Since $C_c(X \times G) \subseteq C^*_{red}(X \times G)$ is a dense subset, it suffices to show the strong continuity for all normal elements of $C_c(X \times G)$. Let $a \in C_c(X \times G)$ be normal. First, (i) it is shown that $\|(\pi^x(a) - \pi^y(a))\psi\|$ tends to zero if x for all $\psi \in C_c(G)$. Secondly, (ii) a 3ε -argument leads to the desired strong continuity of the map $X \ni x \mapsto \pi^x(a)$.

(i): Consider a $\psi \in \mathcal{C}_c(G)$. Then, for $x, y \in X$, the equation

$$\|(\pi^{x}(a) - \pi^{y}(a))\psi\|^{2} = \sum_{g \in G} \left| \sum_{\tilde{h} \in G} \left(a(g^{-1}x|g^{-1}\tilde{h}) - a(g^{-1}y|g^{-1}\tilde{h}) \right) \cdot \psi(\tilde{h}) \right|^{2}$$

holds. Since $a \in \mathcal{C}_c(X \times G)$ and $\psi \in \mathcal{C}_c(G)$ are compactly supported, the sums are finite. Thus, the continuity of a implies that the field of bounded normal operators $(\pi^x(a))_x$ is strongly continuous.

(ii): Let $\varphi \in \ell^2(G)$ and $\varepsilon > 0$. Since $\mathcal{C}_c(G) \subseteq \ell^2(G)$ is dense, there is a $\psi \in \mathcal{C}_c(G)$ such that $\|\psi - \varphi\| < \frac{\varepsilon}{3C}$ where $C := \|a\| = \sup_{x \in X} \|\pi^x(a)\| < \infty$. Then choose, by (i), an open neighborhood $U \subseteq X$ of x such that $\|(\pi^x(a) - \pi^y(a))\psi\| < \frac{\varepsilon}{3}$ holds for all $y \in U$. Consequently, the estimate

$$\|(\pi^x(a) - \pi^y(a))\varphi\| \le \|\pi^x(a)\| \cdot \|\varphi - \psi\| + \|(\pi^x(a) - \pi^y(a))\psi\| + \|\pi^y(a)\| \cdot \|\varphi - \psi\| < \varepsilon$$
 is derived for all $y \in U$.

Remark 2.24. If the group G is amenable (or acts amenable on X) then the identity $\sigma(a) = \bigcup_{x \in X} \sigma(A_x)$ holds, [Exe14, NP15].

Corollary 2.25. Let $x \in X$ be such that $Orb(x) := \{gx \mid g \in G\}$ is dense in X. Then $\sigma(a) = \sigma(A_x)$ holds for every self-adjoint $a \in \mathcal{C}^*_{red}(X \rtimes G)$.

Proof. Let $y \in X$. Since the orbit $Orb(x) \subseteq X$ is dense, there exists a sequence $(g_n) \subseteq G$ such that $g_n x \to y$. Thus, by the strong continuity we get

$$\sigma(A_y) \subseteq \overline{\lim}_{n \to \infty} \sigma(A_{g_n x}) := \bigcap_{n \in \mathbb{N}} \overline{\left(\bigcup_{m=n}^{\infty} \sigma(A_{g_m x})\right)}.$$

Using the equivariance, we get $\sigma(A_y) \subseteq \sigma(A_x)$. Hence,

$$\sigma(a) = \overline{\bigcup_{y \in X} \sigma(A_y)} \subseteq \sigma(A_x) \subseteq \sigma(A)$$

finishes the proof.

The section is finished by characterizing the constancy of the spectrum by the minimality of the dynamical system. Recall that a dynamical system (X, G) is minimal if for every $x \in X$, its orbit $Orb(x) := \{gx \mid g \in G\} \subseteq X$ is dense.

Proposition 2.26. Let (X,G) be a discrete dynamical system. Then the following assertions are equivalent.

- (i) The dynamical system (X, G) is minimal.
- (ii) For every self-adjoint $a \in \mathcal{C}^*_{red}(X \rtimes G)$, the spectrum $\sigma(\pi^x(a))$ is independent of $x \in X$, i.e., $\sigma(\pi^x(a)) = \sigma(\pi^y(a))$ holds for all $x, y \in X$.
- (iii) The representation π^x is faithful for every $x \in X$.

Proof. The implication $(i) \Rightarrow (ii)$ is well-known fact invoking Corollary 2.25, see e.g. [CFKS87, BIST89, Jit95, Len99, LS03]. For the proof of the statement, the reader is referred to [Bec16, Theorem 3.6.9] which follows the lines of [LS03, Theorem 4.3].

2.3 Example: Hamiltonians on \mathbb{Z}

2.4 The Pastur-Shubin formula

- 2.4.1 A short reminder on direct integral theory
- 2.4.2 IDS for dynamical systems
- 2.4.3 The classical approach

3 K-theory

4 Gap-labeling theorem

5 Application - The Fibonacci sequence

Bibliography

- [Bec16] Siegfried Beckus, Spectral approximation of aperiodic Schrödinger operators, Ph.D. thesis, 2016, Friedrich-Schiller-Universität Jena (Germany), https://arxiv.org/abs/1610.05894, p. 244.
- [Bel92] J. Bellissard, Gap Labelling Theorems for Schrödinger operators, From number theory to physics (Les Houches, 1989), Springer, Berlin, 1992, pp. 538–630. MR 1221111 (94e:46120)
- [BIST89] J. Bellissard, B. Iochum, E. Scoppola, and D. Testard, Spectral properties of one-dimensional quasi-crystals, Comm. Math. Phys. 125 (1989), no. 3, 527–543. MR 1022526 (90m:82043)
- [Bla17] B. Blackadar, Theory of c*-Algebras and von Neumann Algebras, 2017.
- [CFKS87] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, study ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643 (88g:35003)
- [Dix77] J. Dixmier, C*-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977, Translated from the French by Francis Jellett, North-Holland Mathematical Library, Vol. 15. MR 0458185 (56 #16388)
- [Dix81] _____, von Neumann algebras, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981, With a preface by E. C. Lance, Translated from the second French edition by F. Jellett. MR 641217 (83a:46004)
- [Ele08] Gábor Elek, L^2 -spectral invariants and convergent sequences of finite graphs, J. Funct. Anal. **254** (2008), no. 10, 2667–2689.
- [Exe14] R. Exel, *Invertibility in groupoid C*-algebras*, Operator theory, operator algebras and applications, Oper. Theory Adv. Appl., vol. 242, Birkhäuser/Springer, Basel, 2014, pp. 173–183. MR 3243289
- [Jit95] S. Y. Jitomirskaya, Almost everything about the almost Mathieu operator. II,
 XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press,
 Cambridge, MA, 1995, pp. 373–382. MR 1370694 (96m:82035)
- [Len99] D. Lenz, Random operators and crossed products, Math. Phys. Anal. Geom. 2 (1999), no. 2, 197–220. MR 1733886 (2001b:46108)
- [Len02] _____, Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals, Comm. Math. Phys. **227** (2002), no. 1, 119–130. MR 1903841 (2003k:47043)

14 BIBLIOGRAPHY

[LMV08] D. Lenz, P. Müller, and I. Veselić, Uniform existence of the integrated density of states for models on \mathbb{Z}^d , Positivity 12 (2008), no. 4, 571–589.

- [LSV11] D. Lenz, F. Schwarzenberger, and I. Veselić, A Banach space-valued ergodic theorem and the uniform approximation of the integrated density of states, Geom. Dedicata **150** (2011), 1–34, Erratum in DOI: 10.1007/s10711-011-9657-1. MR 2753695
- [LS03] D. Lenz and P. Stollmann, Algebras of random operators associated to Delone dynamical systems, Math. Phys. Anal. Geom. 6 (2003), no. 3, 269–290. MR 1997916 (2004j:46092)
- [LS05] _____, An ergodic theorem for Delone dynamical systems and existence of the integrated density of states, J. Anal. Math. **97** (2005), 1–24. MR 2274971
- [LV09] D. Lenz and I. Veselić, Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence, Math. Z. **263** (2009), no. 4, 813–835.
- [Mur90] G. J. Murphy, C^* -algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574 (91m:46084)
- [NP15] V. Nistor and N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators, 2015, arXiv:1411.7921.
- [Pog14] F. Pogorzelski, Convergence theorems for graph sequences, Internat. J. Algebra Comput. **24** (2014), no. 8, 1233–1251. MR 3296365
- [PS16] F. Pogorzelski and F. Schwarzenberger, A Banach space-valued ergodic theorem for amenable groups and applications, J. Anal. Math. 130 (2016), 19–69. MR 3574647
- [Ren80] J. Renault, A groupoid approach to C^* -algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980.
- [Ren87] _____, Représentation des produits croisés d'algèbres de groupoïdes, J. Operator Theory 18 (1987), no. 1, 67–97. MR 912813
- [Ren91] _____, The ideal structure of groupoid crossed product C*-algebras, J. Operator Theory **25** (1991), no. 1, 3–36, With an appendix by Georges Skandalis. MR 1191252