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Abstract

This notes is based on a lecture given at the Israel Institute of Technology in Haifa. The
reader is invited to send comments and remarks to the author to improve this notes.
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1 Introduction

1.1 Motivation - Schrodinger operators

e solid state physics: long time behavior of particle

= (QM) study spectral theory of Schrédinger operators

H:=-A+V (self-adjoint)

continuous model discrete model
H unbounded H bounded (depends on vertex degree)
Example on L?(R) Example on (*(Z)
H=-% v 4 f(xg) n Lroth)—f(xo)
f(xo+h)—f(zo) ) =\ f(wo+2h)—f(zo+h
ot Utsn)- (o)
h=1

—f(xg) — f(.%'o + 2) -+ 2. f($0 + 1)
(H)(n) == ¥(n —1) +d(n + 1) + V(n)(n)

’ -

1.2 The integrated density of states (IDS)

e the following approach has been widely analyzed as discussed later, see e.g. [Bel92,

Len02, LS05, LMVO08, Ele08, LV09, LSV11, Pogl4, PS16]



2 1. Introduction

e consider the Schrodinger operator H : (2(Z) — (*(Z) defined by
(HY)(n) :==¢(n — 1) +¥(n+ 1) + V(n)y(n)

e take an exhausting sequence Fy := {—N,—-N +1,...,N} CZ,N € N, and denote
by Hp, the restriction of H to F) with Dirichlet boundary conditions

e consider
Npy(E) :=t{\ € R| X eigenvalue of Hp, and A < E'}

Definition 1.1. The limit (if it exists)

T NFN (E)
N = W R
is called integrated density of states (IDS) of H.

e X(Hp, < E) is the eigenprojection onto the eigenspace of Hp, with energies less or
equal than F

e then Np, (E) = tr(X(Hp, < E))

S N(B) £3p

inf(c(H)) E sup(c}(H ) R

e People discovered in examples that the spectral gaps can be labeled such that the
labeling is stable under small perturbations of the Hamiltonian.

e Based on this experiences Jean Bellissard realized that the Gap labeling should be of
topological nature. Thus, he connected the gap labels with the K-theory (Ky-group)
and the trace of associated C*-algebras.

Aim: Determine the gap labels of a given Schrodinger operator.

1.3 Strategy

e dynamical approach — view operators as suitable integral operators with kernels on
the dynamical system (C*-algebra approach)

e Pastur-Shubin formula: write N(FE) as a trace of the corresponding eigenprojections

e under suitable ergodicity assumptions the trace is given by an integral over the
(unique) ergodic measure

e define a group structure on the ”equivalence classes” (by unitary) of the eigenpro-
jection (Ky-group)
e then the possible gap labels are contained in the image of the trace of the K, group



2 (f*-algebras associated with dynamical sys-
tems and the integrated density of states

2.1 (*-algebras

In the following section, funcamental notions of C*-algebras are introduced. This is just
a short summary. The reader is referred to [Dix77, Dix81, Mur90, Blal7] and references
therein for further background.

Definition 2.1 (algebra). An algebra 2 is a vector space (over C) with multiplication
*:AX A=A (a,b) — a-b, satisfying
e ax(bxc)=(axb)xc (associative)
b = b
(atb)xe=axctbxe (distributive)
ax(b+c)=axb+axc
ea-(axb)=(a-a)xb=a*(a-b)

for all a,b,c € A and o € C. An algebra A is called unital if there is an e € 2 such that
exa=axe=a for alla € A. Then e is called unit.

Remark 2.2. If A is a unital algebra, then the unit e is unique. (e = exe’ =¢€') In
general, the multiplication is not commutative. An algebra 2 is said to be commutative if
axb="bxa for all a,b € A and otherwise A is noncommutative.

Definition 2.3 (Banachalgebra). A tuple (2, -||) is called a normed algebra if 2 is an
algebra and the map || - || : A — [0,00) is a norm satisfying ||a * b|| < ||a| ||b|| for all
a,b € A. If A is additional unital, we require ||e|| = 1. Furthermore, a normed algebra
(24, ]| - ||) is called Banachalgebra if (2L, || - ||) is a complete space.

Ezample 2.4. The normed space (¢1(Z), | - ||1) with [[¢]l; := Y,z [ (n)| and multi-
plication

(¥ x@)(n) ==Y (n—k)p(k)

kEZ

is a (commutative) Banachalgebra with unit dy € ¢*(Z) defined by dy(n) = 1if n =1
and otherwise dy(n) = 0.

Remark 2.5. The constraint |jaxb|| < ||a|| ||b|| guarantees the continuity of the multipli-
cation on A.

Definition 2.6 (x-algebra). Let 2 be an algebra. A map * : A — A is called involution if
o (a+ ab)* =a* + ab*
e (axb)* =b"*a

° (a*)* =q
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holds for all a,b € A and o € C. Then (U, *) is called x-algebra / involutive algebra.

Definition 2.7 (C*-algebra). Let (€, x, || - ||) be a *x-Banachalgebra. Then € is called a
C*-algebra if

la* < fla* xall,  a€C,
holds.
Remark 2.8. The constraint ||a||* < ||la* * al| is equivalent to ||a||* = ||a* x al|. For a
C*-algebra, x : € — € is isometric (i.e., ||a*|| = ||a||) since

lall* < lla* > all < lla*[llal = lall < |la"].

Ezample 2.9 (Complex plane). The set € = C with pointwise multiplication and invo-
lution defined by complex conjugation is a unital (commutative) C*-algebra with unit
e =1 where ||af := |a].

Ezample 2.10. Let X be a topological space (locally compact). The set € = Co(X)
with pointwise multiplication, uniform norm ||f||s~ = sup,cx |f(z)| and involution
defined by complex conjugation is a (commutative) C*-algebra. It is unital if and only
if X is a compact space.

Ezample 2.11 (Linear bounded operators). Let H be a Hilbert space. Let L£(H) be
the set of all linear, bounded operators T : H — H with multiplication defined by
composition, involution defined by the adjoint of an operator and operator norm ||7'|| :=
supjy <1 I7%|. Then € := L(H) is a (noncommutative) C*-algebra. For T' € L(H),
the norm closure of the set {p(T) | p polynomial} is a (commutative) C*-subalgebra.

Ezxample 2.12. The normed space (€'(Z), || - ||1) with [[¢|l; :== >",c; [¢(n)| and convo-
lution
(V) (n) =3 _v(n—k)o(k)

is a (commutative) Banachalgebra with unit §y € ¢'(Z) defined by do(n) = 1if n =1
and otherwise dy(n) = 0. The map * : £*(Z) — (*(Z) defined by 1*(n) := 1¥»(—n) defines
a involution. Hence, (¢}(Z),*,] - ||1) is a *-Banachalgebra but not a C*-algebra: Let
Y € [Y(Z) be defined by ¥(0) = 1,9(1) = ¢(2) = —1 and ¥(n) = 0 if n € Z\ {0, 1, 2}.
Then

3, n =20,
(¢**¢)(n) =< —1, n = =42,
0, otherwise

holds. Thus, ||¢* x ¢| = 5 while ||¢||* = 9. Consequently, the C*-identity is not
satisfied.

Definition 2.13 (Representation). Let A be an x-algebra. Then a pair (7, H) is called a
s-representation of A if H is a Hilbert space and © : A — L(H) is a x-homomorphism,
1.€.,
(i) m is linear;
(11) w is multiplicative, i.e., w(f *x g) = 7(f)mw(g) holds for all f,g5 € A;
(i1i) m preserves the involution, i.e., w(f*) = w(f)* holds for all f € A where w(f)* is the
adjoint operator of w(f) € L(FH).

A family of representations (1%, H,)zex is called faithful whenever the family is injective,

i.e., £ =0 if and only if 7*(f) =0 for all x € X.
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Definition 2.14 (invertible). Let 2 be a unital Banachalgebra. An element a € U is said
to be invertible, if there is an element b € A such that axb=bxa = e.

Remark 2.15. The inverse b of a € 2 is unique (if it exists) since b = b* (a V') =
(bxa)xb =10.

Definition 2.16 (spectrum). Let 2 be a unital Banachalgebra and a € A. The set
o(a) := {X € C|Xe — a not invertible}

is called spectrum of a and p(a) := C\ o(a) is the resolvent.

We say that a € 2 in a x-algebra 2 is

e self-adjoint if a* = a;

e normal if a* xa = a x a*;

2.2 Dynamical systems and the (reduced) C*-algebra

In this section, we introduce the reduced C*-algebra associated with a dynamical system.
There are different ways to define this C*-algebra. We follow the construction in the more
general setting of groupoid C*-algebra. The classical reference for groupoid C*-algebras
is [Ren87, Ren91]. The reader is referred also to [Becl6, Section 3.4, Section 3.5] and
references therein. The groupoid structure associated with a dynamical system is called
transformation group groupoid.

A group G is a set equipped with a composition o : G x G — G, an inverse ' : G — G
and a unit e € G such that

e o is associative;
egogl=glog=cforallged.

If, additionally, G is equipped with a topology, G is a topological group if the composition
and the inverse are continuous.

Definition 2.17. The tuple (X, G) is called a (discrete) dynamical system if X is a
compact second countable Hausdorff space, G is a countable group (equipped with discrete
topology) and there is an o : G x X — X is continuous and it satisfies a(e,x) = x and
a(g, a(h,x)) = algh,z) for allz € X and g,h € G.

Specifically, the group G acts on X by homeomorphism. For simplification, we write gz
for a(g,z). Now, we define a C*-algebra associated with a dynamical system (X, G). A
subset Y C X is called invariant if gY = {gy|ly € Y} C Y for all g € G.

Every countable group admits a unique Haar measure A given by the counting measure
> geG Og- A probability measure p on the Borel o-algebra of X is called G-invariant if
p(gF) = u(F) for all Borel measurable sets FF C X and g € G. Furthermore, p is said
to be ergodic if (Y") is zero or one for all invariant subsets Y C X. A dynamical system
(X, Q) is called uniquely ergodic if (X, G) admits exactly one G-invariant measure on X.

Remark 2.18. A fundamental statement within the theory of dynamical systems is that
the space of invariant probability measure (equipped with the weak-x topology) is a conver,
closed subset. Its extreme point are given by the ergodic measure. Thus, this set is
the closed convex hull of the ergodic measures (Krein-Milman theorem). Note that the
existence of invariant measures is an assumption.
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Consider C.(X x G) the set of continuous functions a : X x G — C with compact support.
This space is usually equipped with the inductive limit topology (i.e., a net (a,), converges
to a € C.(X x Q) if there is a compact K C X X G and a tg such that supp(a,) C K for
all © > 1y and (a,) converges uniformly on K to a).

The set C.(X x G) gets a x-algebra if equipped with the convolution

(axb)(z,9) := > a(z,h)b(h~'z, h™'g) (convolution)
heG
a*(z,9) == a(g~'z, g7 'h) (involution)

We can make the x-algebra to a C*-algebra by representing it by suitable operators on
the Hilbert space ¢*(G) and completing the space with the induced norm. For z € X, the
left-regular representation 7% : C.(X x G) — L(€*(G)) is defined by

(7" (a)¥)(9) ==Y a(g 'z, g 'h)w(h), ¢ €(G), g€,

heG

for a € C.(X x G).

Proposition 2.19. The family (7%).cx defines a faithful x-representation. In particular,
7%(a) defines a linear, bounded operator on (*(G) for each a € C.(X x G) and z € X.
The operator norm ||7*(a)|| is bounded by

Cla) :=t{g e G|Ir € X s.t. a(z,g9) # 0} - ||a] co-

Proof. You can find the proof in the more general case of groupoids in [Ren80, Propo-
sition II.1.1, I1.1.4, 11.1.9], see also [Becl6, Section 3.4, Section 3.5]. Let us give here a
simplified direct proof. That 7* is a x-representation follows by direct algebraic compu-
tations. Note that all involved sums are finite since a € C.(X x G) has finite support
in G. That 7%(a) defines a bounded operator follows by a short computation invoking
Cauchy-Schwarz inequality:

()l =" | (a)e) (@)

< (St 0l o
geG \heG
<3 (Sl ) (bt o
geG \heG heG
<cto- (5 (St e oo
<C(a)?J¥|?

Finally it is left to show that the family of representations (7%),cx) is faithful. Clearly,
if a = 0 then 7%(a) = 0 for all z € X. For the converse direction, let 7%(a) = 0 for all
x € X and assume that a # 0 which we will show to be a contradiction. By assumption
there is a tuple (y,g) € X x G such that a(y, g) # 0. Thus,

(m(@)3,) (@) = > a(@ 'y, 57 h)o,(h) = a(37"y,5"g) = aly.g) # 0
heG
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follows for g = e. Hence,

I @) = = (@) = [>_1((@3d,) @ = | (7¥(a)d,)(e)| = laly, )] >0

gea
is derived being a contradiction. U

Remark 2.20. [t is worth mentioning that {g € G |3z € X s.t. a(x,g) # 0} is finite
fora € C.(X x G) since G is countable and a has compact support.

With this at hand, we define a norm on C.(X x G) by ||a|| :== sup,cy ||7*(a)|. This norm
is also called reduced norm.

Proposition 2.21. The *-algebra C.(X xXG) equipped with the norm ||a|| := sup,cx |7 (a)||
is a normed unital *-algebra with unit I := Xx x 0,. Furthermore, the estimate ||a||* <
||a* x al| holds.

Proof. A short computation yields

lax bl = sup [|7*(ax b)|| = sup [|7*(a) x* ()| < sup [|7*(a)|[ [7*(0)I| < [lal| [[6]],
reX reX reX
implying that (C.(X xG), ||-||) is a normed algebra. Similarly, the x-identity follows as the

operator norm fulfills it. For a € C.(X x (), a short computation leads to axI = Ixa = a.
U

The completion C,;(X X G) of C.(X x G) with respect to the reduced norm is a C*-algebra.

red

Remark 2.22. If G is not discrete or X is not compact, then C},,(X x G) has not a unit.
(this is actually a characterization of this C*-algebra being unital.)

The previous considerations lead us to the theory of random operator families. Let (X, G)
be a discrete dynamical system. Every element a € C;,,(X xG) induces an operator family

A= (A)zex with A, := 7%(a) (convolution operator/integral operator with kernel a).

Proposition 2.23. Let (X,G) be a discrete dynamical system. Consider an operator
family A = (Ay)zex with A, = 7%(a) induced by a normal element a € C' (X x G).
Then the following assertions hold.

(a) The spectrum o(a) is equal to the union \J,cy 0(Asz).

(b) The family of operators is equivariant/covariant, i.e., the equation
Ape = UpAUp—
holds for all h € G where Uy, : (2(G) — (*(G), Uptb(g) :=(h™'g) is unitary.
(c) The map X > x> A, is strongly continuous on L((*(Q)), i.e., the limit
lim [ (4, — A:) ¢

Yy—x

is equal to zero for all ¢ € (*(G) and v € X .

Proof. (a): For the proof see [NP15]. If 7 is a *-representation of a unital C*-algebra
2, then o(m(a)) C o(a). (If a — X € A is invertible, then m(a) — A is also invertible and
so p(a) C p(w(a)).) The converse is proven by contradiction. One shows that ©,cx7” :

* (X X G) = @ex L(2(G)) is injective, surjective (on the image) and continuous (so

a C*-isomorphism and so it preserves the spectrum. If now A € o(a) \ U,cx 0(A:), the
inverse % (a — A)~! is well-defined for all z € X and ||[7%(a — A)~!|| is uniformly (in X)



8 2. C*-algebras associated with dynamical systems and the integrated density of states

bounded as A has a positive distance to |J,.y 0(A4;). Consequently, ©,cx7(a — A) is
invertible. Since @,cx7” is an isomorphism, a — \ is also invertible, a contradiction.

(b): Let z € X and h € G. Then, for every ¢ € (*(G) and g € G, a short computation
leads to

(i) (9) = 3 a (g7 hal g7h) - wi(R)
heG
= > () e (h ') AR - (Uw) (0D
heG
= (7"(a) (Up-11)) (h"'g)
= (UnAUn—1¢) (9).-
(c): Since C.(X x G) C Cf, (X x G) is a dense subset, it suffices to show the strong
continuity for all normal elements of C.(X x G). Let a € C.(X x G) be normal. First, (i)

it is shown that ||(7%(a) — 7¥(a))®|| tends to zero if x for all ¢ € C.(G). Secondly, (ii) a
3e-argument leads to the desired strong continuity of the map X > z — 7%(a).

(i): Consider a ) € C.(G). Then, for z,y € X, the equation
2

(7 (a) = (@) wl* = D[S (alg™elg™h) — algvlg™h)) - v(h)

9€G |heG

holds. Since a € C.(X x G) and ¢ € C.(G) are compactly supported, the sums are finite.
Thus, the continuity of a implies that the field of bounded normal operators (7*(a)), is
strongly continuous.

(ii): Let ¢ € £*(G) and € > 0. Since C.(G) C ¢*(G) is dense, there is a ¢ € C.(G) such
that ||y — ¢|| < 35 where C' := ||a|]| = sup,cx [|7"(a)|| < co. Then choose, by (i), an
open neighborhood U C X of x such that ||(7%(a) — 7¥(a))¢|| < & holds for all y € U.

Consequently, the estimate
(7" (@) =7 (@)e|| < 7 @[] o = ]| + | (="(a) = 7*(@) | + |7 (@)|- [} = ¥l < €
is derived for all y € U. 0

Remark 2.24. If the group G is amenable (or acts amenable on X ) then the identity
o(a) = U,ex 0(Az) holds, [Exel, NP15].

Corollary 2.25. Let v € X be such that Orb(x) := {gz|g € G} is dense in X. Then
o(a) = o(A,) holds for every self-adjoint a € C*,,(X x G).

red

Proof. Let y € X. Since the orbit Orb(z) C X is dense, there exists a sequence (g,) C G
such that g, — y. Thus, by the strong continuity we get

o(Ay) €T (Ag,e) = () (U a(4,,)).

neN

Using the equivariance, we get 0(A4,) C 0(A,). Hence,

o(a) = [ o(4,) C o(4,) € o(A)
yeX
finishes the proof. [l
The section is finished by characterizing the constancy of the spectrum by the minimality

of the dynamical system. Recall that a dynamical system (X, G) is minimal if for every
xr € X, its orbit Orb(z) := {gx|g € G} C X is dense.
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Proposition 2.26. Let (X, G) be a discrete dynamical system. Then the following asser-
tions are equivalent.

(i) The dynamical system (X, Q) is minimal.
(it) For every self-adjoint a € C;,4(X x G), the spectrum o(n*(a)) is independent of
z € X, ie,o(r(a)) =o(n¥(a)) holds for all z,y € X.
(11i) The representation ° is faithful for every x € X.

Proof. The implication (i) = (éi) is well-known fact invoking Corollary 2.25, see e.g.
[CFKS87, BISTR9, Jit95, Len99, LS03]. For the proof of the statement, the reader is
referred to [Becl6, Theorem 3.6.9] which follows the lines of [L.S03, Theorem4.3]. O

2.3 Example: Hamiltonians on Z
2.4 The Pastur-Shubin formula

2.4.1 A short reminder on direct integral theory
2.4.2 1IDS for dynamical systems
2.4.3 The classical approach
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